Experimental Real-time Heuristic Search Results in a Video Game

Ethan Burns and Scott Kiesel and Wheeler Ruml

Department of Computer Science
University of New Hampshire
eaburns, skiesel, ruml at cs.unh.edu

Abstract

In real-time domains such as video games, a planning algo-
rithm has a strictly bounded time before it must return the
next action for the agent to execute. We introduce a realistic
video game benchmark domain that is useful for evaluating
real-time heuristic search algorithms. Unlike previous bench-
marks such as grid pathfinding and the sliding tile puzzle, this
new domain includes dynamics and induces a directed graph.
Using both the previous and new domains, we investigate sev-
eral enhancements to a leading real-time search algorithm,
LSS-LRTA*. We show experimentally that 1) it is not dif-
ficult to outperform A* when optimizing goal achievement
time, 2) it is better to plan after each action than to commit
to multiple actions or to use a dynamically sized lookahead,
3) A*-based lookahead can cause undesirable actions to be
selected, and 4) on-line de-biasing of the heuristic can lead
to improved performance. We hope that this new domain and
results will stimulate further research on applying real-time
search to dynamic real-time domains.

Introduction

In many applications it is highly desirable for an agent to
achieve an issued task as quickly as possible. Consider
the common example of a navigation task in a video game.
When a user selects a destination for a character to move
to, they expect the character to arrive at its destination as
soon as possible, thus suggesting that planning and execu-
tion happen in parallel. Real-time heuristic search has been
developed to address this problem. Algorithms in this class
perform short planning episodes (limited by a provided real-
time bound), finding partial solutions and beginning execu-
tion before the goal has been found. While solution quality
and overall search time are traditional heuristic search met-
rics, real-time heuristic search algorithms are compared by
the length of the trajectories they execute.

In this paper, we introduce a new platformer video game
domain where the agent must navigate through a series of
platforms by moving and jumping around obstacles to ar-
rive at a specified goal location. Using this new domain, as
well as several classic search domains, we show modifica-
tions to Local Search Space Learning Real Time A* (LSS-
LRTA¥*), a leading real time search algorithm, that signifi-
cantly increase its performance with respect to goal achieve-
ment time.

First, we show that LSS-LRTA* (Koenig and Sun 2009),
which executes multiple actions per planning episode, can
greatly improve its goal achievement by executing only a
single action at a time. Second, it has become the standard
practice to construct the local search space of a real-time
search using a partial A* search. We show that if care is
not taken to compare search nodes correctly, superfluous ac-
tions can be selected for execution. Third, we show that ap-
plying on-line de-biasing of the heuristic used during search
can significantly reduce the overall goal achievement time.
Fourth, we present results showing that A*, which performs
optimally with respect to the number of expansions required
to produce an optimal solution, can easily be outperformed
when one cares about goal achievement time.

Together, these modifications can be easily applied and
deployed to vastly improve the overall performance of an
agent being controlled by a real-time heuristic search algo-
rithm. Videos illustrating our new domain and the discussed
algorithms are provided at the following URL: http://
bit.ly/YUFx00.

Previous Work

There has been much work in the area of real-time search
since it was initially proposed by Korf (1990). In this section
we will review the real-time search algorithms most relevant
for our study.

LRTA*

Many real-time search algorithms are considered agent-
centered search algorithms, because the agent performs a
bounded amount of lookahead search rooted at its current
state before acting. By bounding the size of each looka-
head search, the agent can respect the real-time constraints
and complete each search iteration by the time the real-time
limit has been reached. In his seminal paper, Korf (1990)
presents Learning Real-time A* (LRTA*), a complete,
agent-centered, real-time search algorithm. LRTA* selects
the next action to perform by using the edge costs and esti-
mates of cost-to-goal, or heuristic values, for the states re-
sulting from applying each of its current applicable actions.
It chooses to execute the action with the lowest sum of edge
cost and estimated cost-to-goal.

LRTA* estimates the heuristic value for states in two dif-
ferent ways. First, if a state has never been visited before

then it uses a depth-bounded, depth-first lookahead search.
The estimated cost of the state is the minimum f value
among all leaves of the lookahead search. The second way
that it estimates cost is through learning. Each time LRTA*
performs an action, it learns an updated heuristic value for its
current state. If this state is encountered again, the learned
estimate is used instead searching again. Korf proved that
as long as the previous state’s heuristic estimate is increased
after each move by an amount bounded from below by some
€ (Russell and Wefald 1991), then the agent will never get
into an infinite cycle, and the algorithm will be complete.
In the original algorithm, the second best action’s heuristic
value is used to update the cost estimate of the current state
before the agent moves.

LSS-LRTA*

Local Search Space Learning Real-time A* (LSS-LRTA*,
Koenig and Sun 2009) is currently one of the most popular
real-time search algorithms. LSS-LRTA* has two big ad-
vantages over the original LRTA*: it has much less variance
in lookahead times, and it does significantly more learning.
LRTA* can have a large variance in its lookahead times be-
cause, even with the same depth limit, different searches
can expand very different numbers of nodes due to prun-
ing. Instead of using bounded depth-first search beneath
each successor state, LSS-LRTA* uses a single A* search
rooted at the agent’s current state. The A* search is lim-
ited by the number of nodes that it can expand, so there is
significantly less variance in lookahead times. The second
advantage is that the original LRTA* only learns updated
heuristics for states that the agent has visited; LSS-LRTA*
learns updated heuristics for every state expanded in each
lookahead search. This is accomplished using Dijkstra’s al-
gorithm to propagate more accurate heuristic values from the
fringe of the lookahead search back to the interior before the
agent moves. Koenig and Sun showed that LSS-LRTA* can
find much cheaper solutions than LRTA* and that it is com-
petitive with a state-of-the-art incremental search, D*Lite
(Koenig and Likhachev 2002).

Another major difference between LRTA* and LSS-
LRTA* is how the agent moves. In LRTA*, after each looka-
head, the agent moves by performing a single action; in LSS-
LRTA* the agent moves all the way to the node on the fringe
of its current lookahead search with the lowest f value. This
allows the agent to perform many fewer searches before ar-
riving at a goal. However, as we will see below, when search
and execution are allowed to happen in parallel, the move-
ment method of LSS-LRTA* can actually be detrimental to
performance.

Evaluating Real-time search Algorithms

Recently, Herndndez et al. (2012) introduced the game time
model for evaluating real-time heuristic search algorithms.
In the game time model, time is divided into uniform inter-
vals. During each interval, an agent has three choices: it
can search, it can execute an action, or it can do both search
and execute in parallel. The game time model objective is
to mimimize the number of time intervals required for the

agent to move from its start state to a goal state. The advan-
tage of the game time model is that it allows for comparisons
between real-time algorithms that search and execute in the
same time step and off-line algorithms, like A*, that search
first and execute only after all a full solution has been found.
Off-line algorithms often find lower-cost paths (for exam-
ple, A* finds optimal paths), but they do not allow search
and execution to take place during the same time interval;
they always search for a full solution before any execution
begins. Real-time algorithms tend to find higher-cost paths,
but they can be more efficient by allowing search and execu-
tion to occur in parallel.

Goal Achievement Time

The game time model is a good fit for domains where all ac-
tions are unit cost. However, in practice domains can have
varying actions durations, for example video games can sup-
port 8-way navigation which allows diagonal movement at
the cost of v/2. In these situations it is more accurate to track
performance based on a real-valued metric. Goal achieve-
ment time (GAT) is a novel generalization of the game time
model discussed in the previous section. The game time
model requires that time be divided into discrete, uniform
time intervals while goal achievement time requires no such
restriction. Agents optimizing goal achievement time, for
example, can execute actions at any point in time and can
execute actions of varying durations without syncing up to a
predefined time interval.

When computing goal achievement time in the case of
parallel planning and execution, it is important to differen-
tiate between planning that occurs on its own and planning
that occurs in parallel with execution. If one were to simply
sum the total planning and execution times, then the time
spent planning and executing in parallel would be double
counted. All algorithms discussed in this paper, except for
A* and Speedy (Thayer and Ruml 2009), perform their plan-
ning in parallel with execution except for the planning re-
quired to find the very first action. To compute goal achieve-
ment time for these algorithms, we simply add this short
amount of initial planning time to the execution time. In the
case of an offline algorithm such as A*, we add its entire
planning time to the time required to execute the solution it
finds.

The Platform Game Benchmark

Unlike previous benchmarks such as grid pathfinding and
the sliding tile puzzle, this new platform game benchmark
domain includes dynamics and induces a directed graph.
This domain is a path-finding domain of our own cre-
ation with dynamics based on a 2-dimensional platform-
style video game (e.g. Super Mario Bros and Duke
Nukem) called mid (http://code.google.com/p/
mid-game). The left image of Figure 1 shows a screen-
shot from mid. The goal is for the knight to traverse a maze
from its initial location, jumping from platform to platform,
until it reaches the door (the goal). Short videos of each al-
gorithm solving instances of the game are available from the
URL provided in the Introduction and an example instance

Figure 1: A screenshot of the platform path-finding do-
main (left), and a zoomed-out image of a single instance
(right). The knight must find a path from its starting loca-
tion, through a maze, to the door (on the right-side in the left
image, and just above the center in the right image).

is shown on the right panel in Figure 1. The domain is unit-
cost (actions are discretized to the duration of one frame of
animation) and has a large state space with a well-informed
visibility graph heuristic (Nilsson 1969).

The instances used in our experiments were created using
the level generator from mid, a special maze generator that
builds 2-dimensional platform mazes on a grid of blocks.
In our experiments we used 50 x 50 grids. Each block is
either open or occluded, and to ensure solvability given the
constraints imposed by limited jump height, the generator
builds the maze by stitching together pieces from a hand-
created portfolio. The source code for the level generator is
available in the mid source repository mentioned above.

The available actions in this domain are different combi-
nations of controller keys (left, right, and jump) that may be
pressed during a single iteration of the game’s main loop.
This allows for the obvious actions such as move left, move
right or jump, and also more complicated actions like jump
up and left or jump up and right. The average branching
factor across the state space is approximately 4. The knight
can also jump to different heights by holding the jump but-
ton across multiple actions in a row up to a maximum of
8 actions. The actions are unit cost, so the cost of an en-
tire solution is the number of game loop iterations, called
frames, required to execute the path. Typically, each frame
corresponds to 50ms of game play.

Each state in the state space contains the x and y position
of the knight using double-precision floating point values,
the velocity in the y direction (x velocity is not stored as it
is determined solely by the left and right actions), the num-
ber of remaining actions for which pressing the jump button
will add additional height to a jump, and a boolean stating
whether or not the knight is currently falling. The knight
moves at a speed of 3.25 units per frame in the horizontal
direction, it jumps at a speed of 7 units per frame, and to
simulate gravity while falling, 0.5 units per frame are added
to the knight’s downward velocity up to a terminal velocity
of 12 units per frame.

Lookahead Commitment

An important step in a real-time search algorithm is select-
ing how to move the agent before the next phase of planning
begins. As mentioned above, in the original LRTA* algo-
rithm, the agent moves a single step, while in LSS-LRTA*;
the agent moves all of the way to a frontier node in the lo-
cal search space. LusStrek and Bulitko (2006) reported that
solution length increased when switching from a single-step
to multi-step policy using original LRTA* algorithm. It was
unclear if this behavior would carry over given the increased
learning performed by LSS-LRTA* and the use of a new
goal achievement metric.

Single-step and Dynamic Lookahead

In addition to the standard LSS-LRTA* algorithm, we im-
plemented a version that executes single actions like LRTA*,
but still applies heuristic learning across the entire local
search space. If all of the agent’s actions have the same du-
ration, then except for the time spent to find the first action,
no time is wasted executing without also planning.

We also implemented LSS-LRTA* using a dynamic
lookahead strategy that executes multiple actions. With a
dynamic lookahead, the agent selects the amount of looka-
head search to perform based on the duration of its currently
executing trajectory. When the agent commits to executing
multiple actions then it simply adjusts its lookahead to fill
the entire execution time.

All approaches require offline training to determine the
speed at which the agent can perform lookahead search. In
the first cases, it is necessary to know the maximum looka-
head size that the agent can search during the minimum ac-
tion execution time. This can be found by simply running
the search algorithm with different fixed lookahead settings
on a representative set of training instances and recording
the per-step search times. In the last case, with a dynamic
lookahead, the agent must learn a function mapping dura-
tions to lookahead sizes. When the agent commits to a tra-
jectory that requires time ¢ to execute, then it must use this
function to find (), the maximum lookahead size that the
agent can search in time ¢. Note that, because the data struc-
tures used during search often have non-linear-time opera-
tions, this function may not be linear. It is possible to cre-
ate a conservative approximation of /() by running an al-
gorithm on a representative set of training instances with a
large variety of fixed lookahead sizes. The approximation of
1(t) selects the largest lookahead size that always completed
within time £.

Experimental Evaluation

For our first set of experiments using the platform domain
we used 25 test instances. The instances were created using
the level generator from mid where levels for each instance
were unique and had a random start and goal location. We
used the offline training techniques described above to learn
the amount of time required to perform different amounts
of lookahead search. For the offline training, we generated
25 training platform domain instances. The lookahead val-
ues used were 1, 5, 10, 20, 50, 100, 200, 400, 800, 1000,

platform

1.8 multi-step (LSS-LRTA*) —5—
: l single-step -4+
(2 | = \ dynamic —©—
ﬁ 1.2 \
e \
e 1 \
g | \
= \
“~ 0.6 \
o \
S H

3 2 1 0
log10 unit action duration

Figure 2: LSS-LRTA*: multi-step, single-step, and dynamic
lookahead.

1500, 2000, 3000, 4000, 8000 10000, 16000, 32000, 48000,
64000, 128000, 196000, 256000, 512000. For algorithms
that use a fixed-size lookahead, the lookahead value was se-
lected by choosing the largest lookahead size for which the
mean step time on the training instances was within a single
action duration. If none of the lookahead values were fast
enough to fit within a single action time, for a given action
duration, then no data is reported. Our implementation used
the mean step time instead of the maximum step time, as the
later was usually too large due to very rare, slow steps. We
attribute these outliers to occasional, unpredictive overhead
in things such as memory allocation. We suspect that this
issue would go away if our experiments had been run on a
real-time operating system where such operations perform
more predictive computations.

Figure 2 shows a comparison of these different techniques
for the LSS-LRTA* algorithm. The y axis is on a log; scale
and shows the goal achievement time as a factor of the best
goal achievement time reported across an instance. We con-
sider a variety of actions durations simulating different pos-
sible frame rates or agent capabilities; these are shown on
the x axis also on a logjp scale. Smaller action durations
represent an agent that can move relatively quickly or a high
frame rate, so spending a lot of time planning to make small
decreases in solution cost may not be worth the time. For
larger values, the agent moves more slowly, and it may be
worth planning more to execute cheaper paths. Each point
on the plot shows the mean goal achievement time over the
25 test instances, and error bars show the 95% confidence
interval.

From this plot, it is clear that the multi-step approach
(standard LSS-LRTA*) performs worse than both the single-
step and the dynamic lookahead variants in the platform do-
main. This is likely because the multi-step technique com-

h

3 3 2 2 1 1 0
g=2 | g=1 | g=2 | g3 | g4]| g5 | g6
=5 | f=4 | =4 | =5 | =5 | =6 | =6
g=1 s | & 1| g=2|¢g=3| g4 *
=4 =3 | f=4 | f=4 | =5
g=2 | g=1|g=2| g3 |g4]|g5]| g0
=5 | =4 | =4 | =5 | =5 | =6 | =6

Figure 3: Example of heuristic error and f layers.

Figure 4: f-layered lookahead.

mits to many actions with only a little bit of planning—the
same amount of planning that the single-step variant uses to
commit to just one action. However, as the unit action dura-
tion is increased to 1 second (the recommended frame rate
for the platform domain is 0.02 seconds) the algorithms be-
gin to perform similarly. However, single-step and dynamic
still do appear to perform slightly better.

A*-based Lookahead

In standard LSS-LRTA*, the lookahead search is A*-based,
so nodes are expanded in f order. After searching the agent
moves to the node on the open list with the lowest f value.
We will show why this choice can be problematic, and we
will see how it can be remedied.

Heuristic Error

f-based lookahead does not account for heuristic error. The
admissible heuristic used to compute f is a low-biased, un-
derestimate of the true solution cost through each node. Be-
cause of this heuristic error, not all nodes with the same
f value will actually lead toward the goal node. Figure 3
shows an example using a simple grid pathfinding problem.
In the figure, the agent is located in the cell labeled ‘S’ and
the goal node is denoted by the star. The admissible h val-
ues are the same for each column of the grid; they are listed
across the top of the columns. The g and f values are shown
in each cell. Cells with f = 4 are bold, and the rest are light
gray. We can see that nodes with equivalent f values form
elliptical rings around the start node. We call these f layers.
While some nodes in an f layer are getting closer to the goal
node, there are many nodes in each layer that are not. Some
nodes in an f layer will be moving exactly away from the

goal. In this simple problem, the optimal solution is to move
the agent to the right until the goal is reached. However, of
the 7 nodes with f = 4, only 2 nodes are along this optimal
path; the other nodes are not, and yet they have the same
f value because of the heuristic error. If the agent were to
move to a random node with f = 4, chances are it will not
be following the optimal path to the goal.

One way to alleviate this problem is to use a second cri-
terion for breaking ties among nodes with the same f value.
A common tie breaker is to favor nodes with lower h values
as, according to the heuristic, these nodes will be closer to
the goal. We can see, in Figure 3 that among all nodes in
the f = 4 layer, the one with the lowest h value (h = 1)
is actually along the optimal path. In LSS-LRTA* this tie
breaking is insufficient, because when LSS-LRTA* stops its
lookahead it may not have generated all of the nodes in the
largest f layer. If the node with h = 1 was not generated
then, even with tie breaking, the agent will be led astray.

Incomplete [Layers

These incomplete f layers cause other problems too. Recall
that, in LSS-LRTA* the agent moves to the node at the front
of the open list. If low-h tie breaking is used to order the ex-
pansions of the local search space, then the best nodes in the
first f layer on the open list will actually be expanded first
and will not be on the open list when it comes time for the
agent to move. Figure 4 shows the problem diagramatically.
As before, the agent is at the node labelled ‘S’ and the goal
is denoted by the star. Each ellipse represents a different f
layer, the shaded portions show closed nodes, darker shad-
ing denotes nodes with larger f values, and the dotted lines
surround nodes on the open list. As we can see, the closed
nodes with the largest f values cap the tip of the second-
largest f layer. This is consistent with low-h tie breaking
where the first open nodes to be expanded and added to the
closed list will be those that have the lowest h. These are
the nodes on the portion of the f layer that are nearest to the
goal. If the agent moves to the node on its open list with
the lowest f value, tie breaking on low h, then it will select
node « and will not take the best route toward the goal.

Improving Lookahead Search

We have demonstrated two problems: 1) because of heuristic
error, f layers will contain a large number of nodes, many of
which do not lead toward the goal, and 2) even with good tie
breaking, LSS-LRTA* often misses the good nodes because
it only considers partial f layers when deciding where to
move. Next we present two solutions.

The first is quite simple. When choosing where to move,
select the lowest & value on the completely expanded f layer
with the largest f value, not the next node on open. In Fig-
ure 4, this corresponds to the node labeled 8. We call this
the “complete” technique, as it considers only completely
expanded f layers instead of partially expanded, incomplete
layers.

The second technique explicitly accounts for heuristic er-
ror and orders the search queue and selects actions not based
on f, but on a less-biased estimate of solution cost.

heuristic error

(a)

h(s) — g(a) + h(a)

(b)

+ h(o) + d(@)-
— &) +he)+d(aye heuristic error = d(a)¢

()

Figure 5: (a) A standard heuristic and its error. (b) An up-
dated heuristic and its error. (c) Using an updated heuristic
and accounting for heuristic error.

Instead of using the lower-bound estimate f we use an
unbiased estimate that accounts for, and attempts to correct,
heuristic error. Thayer, Dionne, and Ruml (2011) did this
for offline search and we have adopted this technique for
real-time search. We call this estimate f . Like f, f attempts
to estimate the solution cost through a node in the search

space. Unlike f, f is not biased—it is not a lower bound.

f is computed similarly to f, however, it attempts to correct
for the heuristic error by adding in an additional term:

f error

A —_——

f(n) = g(n) +h(n) +d(n) - €
where € is the single-step error in the heuristic, and the ad-
ditional term d(n) - € corrects the error by adding € back to
the cost estimate for each of the d(n) steps remaining from
n to the goal. Following Thayer, Dionne, and Ruml (2011),
we make the simplifying assumption that the error in the
heuristic is distributed evenly among each of the actions on
the path from a node to the goal.

Distance, d, estimates are readily available for many do-
mains; they tend to be just as easy to compute as heuristic
estimates. To estimate e, the single-step heuristic error, we
use a global average of the difference between the f values
of each expanded node and its best child. This difference ac-
counts for the amount of heuristic error due to the single-step
between a parent node and its child. With a perfect heuristic,
one with no error, the f values of a parent node and its best
child would be equal; some of the f will simply have moved
from h into g:

f(parent) = f(child), in the ideal case, so
h(parent) = h(child) + c(parent, child), and
g(parent) = g(child) — c(parent, child)

Since g is known exactly, as is the cost of the edge
c(parent, child), with an imperfect heuristic any difference

platform
0.9 | complete —6—
incomplete (LSS-LRTA*) --&--

fhat —&-

log10 factor of best GAT

3 2 A 0 1
log10 unit action duration

Figure 6: LSS-LRTA*: f-based lookahead and f—based
lookahead.

between f(child) and f(parent) must be caused by error
in the heuristic over this step. Averaging these differences
gives us our estimate e.

In real-time searches like LSS-LRTA*, the heuristic val-
ues of nodes that are expanded during a lookahead search
are updated each time the agent moves. Figure 5 (a) shows
the default heuristic value for a node S. Its error is accrued
over the distance from S to the goal. The updated heuristics
are more accurate than the originals because they are based
on the heuristic values of a node that is closer to the goal,
and thus have less heuristic error. This is shown in Figure 5
(b). Here, we can see that « is the node on the fringe from
which the start state, .S, inherits its updated heuristic value.
Since g(«), the cost from S to «, is known exactly, the error
in the backed up heuristic now comes entirely from the steps
between « and the goal. Since « is closer to the goal, the
error is less than than the error of the original heuristic value
for S.

When computing f (S) in a real-time search, it is neces-
sary to account for the fact that error in the updated heuris-
tic comes from the node «. To do this, we track d(«)
for each node with an updated h value, and we use it to
compute f . This is demonstrated by Figure 5 (c). The
updated heuristic, when accounting for heuristic error, is
h(s) = g(a) + h(a) + d(a) - €, where g(o) 4+ h(a) is
the standard heuristic backup (cf Figure 5 (b)). Our new
technique uses f to order expansions during the lookahead
search in LSS-LRTA*, and it moves to the next node on the
open list with the lowest f value.

Figure 6 shows a comparison of the three techniques:
the standard incomplete f-layer method of LSS-LRTA¥*,
the complete f-layer method, and the approach that uses f
(fhat). To better demonstrate the problem with the standard

platform
LSS-LRTA* —&—

: 1.8 ' single-step f >
&) ; single-step that

B . dynamic f —5—
2 dynamic fhat --4--
4= 1.2

o

= i

Q

ISR

&

- 0.6

oy

=

o-= EEeRs P T TR =)

3 2 1 0
log10 unit action duration

Figure 7: Comparison of the four new real-time techniques.

approach, the plot shows results for the multi-step move-
ment model that commits to a entire path from the current
state to the fringe of the local search space after each looka-
head. The style of this plot is the same as for Figure 2.

Surprisingly in this figure, we can see that complete
performed worse than the standard LSS-LRTA* algorithm.
However this performance spike subsides and complete be-
comes the dominant performer on the right side of the plot.
We attribute this behavior to the underlying motivation for
using complete f-layers. By only considering complete
f-layers, the agent will follow the heuristic more closely.
However, as we know, the heuristic is not perfectly accurate
and cannot be relied on to lead directly to a goal in many
cases. Using f, which attempts to correct the heuristic, to
sort the open list of lookahead searches does perform better
than the other two algorithms on the left side of the plot but
begins to perform slightly worse as the unit action duration
is increased.

Figure 7 shows the results of a comparison between the
four combinations of single-step versus dynamic lookahead
and f-based versus f -based node ordering. In this domain,
f with dynamic lookahead tended to give the best goal
achievement times in portions of the plot where all algo-
rithms did not have significant overlap (i.e., everywhere ex-
cept for the right-half of the plot).

In both Figure 6 and Figure 7, ordering the lookahead
search on f was the common link to the best performance
out of all considered algorithms. Figure 6 demonstrates
the initial intuition that heuristic correction can be used and
greatly improves performance in real-time search. Figure 7
builds on this idea by adding in the dynamic look ahead pro-
posed in the previous section to yield the strongest algorithm
we have seen so far.

platform

—_
oo
L

log10 factor of best GAT
o
(o)
L

1(;:(;10 factor of best GAT
i
|

=)
L

15-puzzle

— orz100d

< dynamic fhat -
© a4l ingl f

= 2. single-step

2 1 Speedy --4--
S 16 LSS-LRTA*-=-
g A* —o—
Q Y

& 0.8

=

2 o Egggg

4 3 2 -1 0
log10 unit action duration

4 3 2 0 1
log10 unit action duration

|
-1 - 3 -2, -1 .0
log10 unit action duration

Figure 8: Comparison with off-line techniques.

platform
1 LSS-LRTA* —=-
Speedy --4--
= 51T single-step f
3 Y dynamic fhat -
=
2
=
3
S
3 i %
8 -
' |
0

-3 -2 -1
log10 unit action duration

Figure 9: Solution costs for dynamic f and single-step f.

Comparison With Off-line Techniques

In the previous sections we have explored modifications
to the LSS-LRTA* algorithm. LSS-LRTA*’s performance
can be improved by applying a single-step policy, using a
dynamically sized lookahead search and applying heuris-
tic value correction. In this section we evaluate the per-
formance of these algorithms against standard offline tech-
niques. We have included two extra domains, 15-puzzle and
grid pathfinding, to demonstrate the generality of these ap-
proaches in this final comparison. We used the 25 instances
that A* was able to solve using a 6GB memory limit from
Korf’s 100 instances (Korf 1985). For pathfinding, we ran
on the orz100d grid map from the video game Dragon Age:
Origins (Sturtevant 2012). We used the 25 instances with
the longest optimal path length for this domain.

By allowing planning and execution to take place simul-
taneously it should be possible to improve over offline tech-
niques that delay execution until planning is finished. To as-
sess this, we compared the best-performing variants of LSS-
LRTA* with A* and an algorithm called Speedy. Speedy is a
best first greedy search on estimated action distance remain-
ing to the goal. Figure 8 shows the results of this compari-
son with the factor of optimal goal achievement time on the
y axis, and Figure 9 shows the same algorithms with the so-
lution costs on the y axis. Optimal goal achievement time is
calculated simply as the time required to execute the optimal
plan from the start state to a goal state.

In the platform domain plot, dynamic f gave the best
performance. Its required planning time remained low, as
the only time it plans without also executing is during its
very first lookahead search used to find first action to exe-
cute. Dynamic f also performed quite well in the 15-puzzle
domain until the unit action duration increased and it was
beaten by A*. In the grid pathfinding domain on the orz100d
map, A* was clearly the best as these instances were able to
be solved quickly.

Discussion

When optimizing goal achievement time it is important to
consider the tradeoff between searching and executing. For
very challenging domains such as the platform domain and
the 15-puzzle, real-time techniques such as LSS-LRTA*
with dynamic f provide a very good balance between search
and execution. These algorithms are able to search while
executing and come up with suboptimal trajectories that can
dominate offline algorithms. However, in easier domains
such as gridpathfinding on the orz100d map, an offline algo-
rithm that can find optimal solutions very quickly will dom-
inate.

Conclusion

In this paper we considered real-time search in the context
of minimizing goal achievement time. First, we introduced

a new platform game benchmark domain that includes dy-
namics and induces a directed graph. Second, we examined
LSS-LRTA*, a popular, state-of-the-art, real-time search al-
gorithm. We saw how it can be improved in challenging do-
mains in three different ways: 1) by performing single-steps
instead of multiple actions per-lookahead or by using a dy-
namic lookahead, 2) by comparing nodes more carefully in
the local A*-based lookaheads, and 3) by using f to explic-
itly unbias the heuristic estimates, and account for heuristic
error. We also showed experimentally that it is not difficult
to outperform A* when optimizing goal achievement time
in challenging domains or when the unit action duration is
relatively small compared to search time.

Given that real-time agent-centered search is inherently
suboptimal the use of inadmissible heuristics is a promising
area of future research.

Acknowledgments

This work was supported in part by NSF (grant 0812141)
and the DARPA CSSG program (grant D11AP00242).

References

Herndndez, C.; Baier, J.; Uras, T.; and Koenig, S. 2012.
Time-bounded adaptive A*. In Proceedings of the Eleventh
International Joint Conference on Autonomous Agents and
Multiagent Systems (AAMAS-12).

Koenig, S., and Likhachev, M. 2002. D* lite. In Proceed-
ings of the eighteenth national conference on artificial intel-
ligence (AAAI-02), 476-483. Menlo Park, CA; Cambridge,
MA; London; AAAI Press; MIT Press; 1999.

Koenig, S., and Sun, X. 2009. Comparing real-time and in-
cremental heuristic search for real-time situated agents. Au-
tonomous Agents and Multi-Agent Systems 18(3):313-341.

Korf, R. E. 1985. Depth-first iterative-deepening: An opti-
mal admissible tree search. Artificial Intelligence 27(1):97—
109.

Korf, R. E. 1990. Real-time heuristic search. Artificial
intelligence 42(2-3):189-211.

Lustrek, M., and Bulitko, V. 2006. Lookahead pathology
in real-time path-finding. In Proceedings of the National
Conference on Artificial Intelligence (AAAI), Workshop on
Learning For Search, 108—114.

Nilsson, N. J. 1969. A mobile automaton: an applica-
tion of artificial intelligence techniques. In Proceedings of
the First International Joint Conference on Artificial intelli-
gence (IJCAI-69), 509-520.

Russell, S., and Wefald, E. 1991. Do the right thing: studies
in limited rationality. The MIT Press.

Sturtevant, N. 2012. Benchmarks for grid-based pathfind-
ing. Transactions on Computational Intelligence and Al in

Games 4(2):144 — 148.

Thayer, J. T., and Ruml, W. 2009. Using distance estimates
in heuristic search. In Proceedings of the Nineteenth Inter-

national Conference on Automated Planning and Schedul-
ing (ICAPS-09).

Thayer, J. T.; Dionne, A.; and Ruml, W. 2011. Learning
inadmissible heuristics during search. In Proceedings of the
Twenty-first International Conference on Automated Plan-
ning and Scheduling (ICAPS-11).

